4 resultados para Time-dependent

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute alterations in cell volume can substantively modulate subsequent metabolism of substrates. However, how such alterations in skeletal muscle modulate protein metabolism is limited. The purpose of this study was to determine the time dependent influence of extracellular osmotic stress on protein turnover in skeletal muscle cells. L6 cells were incubated in hyperosmotic (HYPER; 425.3 ± 1.8mmol/kg), hypo-osmotic (HYPO; 235.4 ± 1.0mmol/kg) or control (CON; 333.5 ± 1.4mmol/kg) media for 4, 8, 12, or 24hrs. During the final 4hrs, incorporation of L-[ring-3,5-3H]-tyrosine was measured to estimate protein synthesis. Western blotting measured markers of protein synthesis and degradation. No differences were observed in any outcomes except p70S6K phosphorylation whereby HYPO was lower (p<0.05) than CON and HYPER; which remained similar except for a large increase at 8hrs for HYPER. These findings suggest that regardless of duration, extracellular osmotic stress does not significantly affect protein metabolism in L6 cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The adventitia has been recognized to play important roles in vascular oxidative stress, remodelling and contraction. We recently demonstrated that adventitial fibroblasts are able to express endothelin-1 (ET-1) in response to angiotensin II (ANG II). However, the mechanisms by which ANG II induces ET-1 expression are unknown. It is also unclear whether the ET-1 receptors are expressed in the adventitia. We therefore examined the role of oxidative stress in the regulation of ET-1. We also investigated the expression of both the ETA and ETB receptors and the roles of these two types of receptors in collagen synthesis and ET-1 clearance in adventitial fibroblasts. Methods and Results: Adventitial fibroblasts were isolated and cultured from the thoracic mouse aorta. Cells were treated with ANG II (lOOnM), ET-1 (lOpM), NADPH oxidase inhibitor apocynin (lOOfiM), the superoxide anion scavenger tempol (lOOfiM), the ANG II receptor antagonists (100[aM), losartan (AT| receptor) and PD 1233 19 (AT2 receptor), the ET-1 receptor antagonists (lOOuM), BQ123 (ETA receptor) and BQ788 (ETB receptor), and the ETB receptor agonist (lOOnM) Sarafotoxin 6C. ET-1 peptide levels were determined by ELISA, while ETA ,ETB and collagen levels were determined by Western blot. ANG II increased ET-1 peptide levels in a time-dependent manner reaching significance when incubated for 24 hours. NAD(P)H oxidase inhibitor, apocynin, as well as the superoxide scanverger, tempol, significantly reduced ANG Il-induced ET-1 peptide levels while over-expression of SOD1 (endogenous antioxidant enzyme) significantly decreased ANG Il-induced collagen I expression, therefore implicating reactive oxygen species in the mediation of ET-1. ANG II increased ETA receptor protein as well as collagen in a similar fashion, reaching significance after 4, 6, and 24 hours treatment. ANG II induced collagen was reduced while in the presence of the ETA receptor antagonist suggesting the role of the ETa receptor in the regulation of the extracellular matrix. ANG II treatment also increased ETB receptor protein levels in a time-dependent manner. ANG II treatment in the presence of the ETB receptor antagonist significantly increased ET-1 peptide levels. On another hand, the ETB receptor agonist, Sarafotoxin 6C, significantly decreased ET-1 peptide levels. These data implicate the role of the ETb receptor in the clearance of the ET-1 peptide. Conclusion: ANG II-induced increases of ET-1 peptide appears to be mediated by reactive oxygen species derived from NAD(P)H oxidase. Both the ETA and ETB receptors are expressed in adventitial fibroblasts. The ETA receptor subtype mediates collagen I expression, while the ETB receptor may play a protective role through increasing the clearance of the ET- 1 peptide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of permanent line transects established on fourteen reefs on the eastern seaboard of the Gulf of Thailand were monitored through a three-year period (1995- 1998) using a video transect method. Hierarchical cluster analysis shows three distinctive reef community types dominated by 1) Porites, 2) Acropora and 3) zoantharians. The reefs are developed under naturally turbid conditions and relatively low salinity due to the proximity of four major river outlets located in the uppermost area of the gulf. The number of Acroporid species on the reefs is positively correlated with distance from the major flver outlets. Eighty-seven species of scleractinian coral were found on the transects. Over the three-year period, the comparison of 1995-97-98 matched stations using Repeated Measures ANOV A reveals no significant time-dependent change in percent area cover of reef components except for an overall significant reduction in the faviid coral component. In the 1997-98 matched station comparison, statistical tests reveal significant increases in both Acropora and Porites components that translated into an overall increase in total living coral cover. These findings indicate that the overall environmental conditions have been favorable for coral growth. Outcompetition of massive corals by faster growing corals on several reefs also indicates conditions favorable for reef expansion. Growth of newlyformed Porites colonies over primary rock substrate and dead coral skeleton was presumably responsible for its rapid increase. Although these reefs are in an area of rapid industrialization and population growth, resultant anthropogenic effects have not yet stopped active coral accretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.